5.     Интеллектуальный агент. Персонализация и многоагентные системы.

Интеллектуальный агент — это программа, самостоятельно выполняющая задание, указанное пользователем компьютера, в течение длительных промежутков времени. Интеллектуальные агенты используются для содействия оператору или сбора информации. Одним из примеров заданий, выполняемых агентами, может служить задача постоянного поиска и сбора необходимой информации в Интернете. Компьютерные вирусы, боты, поисковые роботы — все это также можно отнести к интеллектуальным агентам. Хотя такие агенты имеют строгий алгоритм, «интеллектуальность» в этом контексте понимается как способность приспосабливаться и обучаться.

В искусственном интеллекте, под термином интеллектуальный агент понимаются разумные сущности, наблюдающие за окружающей средой и действующие в ней, при этом их поведение рационально в том смысле, что они способны к пониманию и их действия всегда направлены на достижение какой-либо цели. Такой агент может быть как роботом, так и встроенной программной системой. Об интеллектуальности агента можно говорить, если он взаимодействует с окружающей средой примерно так же, как действовал бы человек.

Эти два значения понятия «интеллектуальный агент» достаточно различны, и между ними почти нет связи. Интеллектуальный агент в первом смысле может быть разработан, используя традиционные методы разработки, в нем немногим больше интеллекта, чем в почтовом клиенте или утилите для форматирования жесткого диска. Однако интеллектуальный агент во втором смысле может быть полностью независимым, выполняя свои задачи.

В операционных системах семейства UNIX интеллектуальный агент, действующий в пределах одного компьютера или локальной сети, обычно называется демоном, в семействе Windows — службой (сервисом). Пример: cron в UNIX и «Планировщик задач» в Windows занимаются тем, что запускают указанные пользователем задания в определённые моменты времени.

Интеллектуальные агенты в искусственном интеллекте

В искусственном интеллекте существует несколько типов агентов. Например:

-         Физический Агент — агент, воспринимающий окружающий мир через некоторые сенсоры и действующий с помощью манипуляторов.

-         Временной агент — агент, который использует изменяющуюся с ходом времени информацию и предлагает некоторые действия или предоставляет данные компьютерной программе или человеку, и получает информацию через программный ввод.

Простая агентная программа может быть математически описана как агентская функция, которая проектирует любой подходящий результат восприятия на действие, которое агент может выполнить, или в коэффициент, элемент обратной связи, функцию или константу, которые могут повлиять на дальнейшие действия.

Программный агент, напротив, проецирует результат восприятия только на действие.

Всех агентов можно разделить на пять групп, по типу обработки воспринимаемой информации:

-    Агенты с простым поведением.

-    Агенты с поведением, основанным на модели.

-    Целенаправленные агенты.

-    Практичные агенты.

-    Обучающиеся агенты.

Агенты с простым поведением действуют только на основе текущих знаний. Их агентская функция основана на схеме условие-действие

IF (условие) THEN действие

Такая функция может быть успешной, только если окружающая среда полностью поддается наблюдению. Некоторые агенты также могут иметь информацию о их текущем состоянии, что позволяет им не обращать внимания на условия, предпосылки которых уже выполнены.

Агенты с поведением, основанным на модели, могут оперировать со средой, лишь частично поддающейся наблюдению. Внутри агента хранится представление о той части, что находится вне границ обзора. Чтобы иметь такое представление, агенту необходимо знать, как выглядит окружающий мир, как он устроен. Эта дополнительная информация дополняет «Картину Мира».

Целенаправленные агенты схожи с предыдущим типом, однако они, помимо прочего, хранят информацию о тех ситуациях, которые для них желательны. Это дает агенту способ выбрать среди многих путей тот, что приведет к нужной цели.

Целенаправленные агенты различают только состояния, когда цель достигнута, и когда не достигнута. Практичные агенты, помимо этого, способны различать, насколько желанно для них текущее состояние. Такая оценка может быть получена с помощью «функции полезности», которая проецирует множество состояний на множество мер полезности состояний.

В некоторой литературе, обучающиеся агенты (ОА) также называются автономными интеллектуальными агентами(англ. autonomous intelligent agents), что означает их независимость и способность к обучению и приспосабливанию к изменяющимся обстоятельствам. По мнению Николая Касабова[1],система ОА должна проявлять следующие способности:

-         обучаться и развиваться в процессе взаимодействия с окружающей средой

-         приспосабливаться в режиме реального времени

-         быстро обучаться на основе большого объема данных

-         пошагово приспосабливать новые способы решения проблем

-         обладать базой примеров с возможностью ее пополнения

-         иметь параметры для моделирования быстрой и долгой памяти, возраста и т. д.

-         анализировать себя в терминах поведения, ошибки и успеха

 

Многоагентная cистема (МАС, англ. Multi-agent system) — это система, образованная несколькими взаимодействующими интеллектуальными агентами. Многоагентные системы могут быть использованы для решения таких проблем, которые сложно или невозможно решить с помощью одного агента или монолитной системы (англ.). Примерами таких задач являются онлайн-торговля, ликвидация чрезвычайных ситуаций[2], и моделирование социальных структур.

В многоагентной системе агенты имеют несколько важных характеристик:

-         Автономность: агенты, хотя бы частично, независимы

-         Ограниченность представления: ни у одного из агентов нет представления о всей системе, или система слишком сложна, чтобы знание о ней имело практическое применение для агента.

-         Децентрализация: нет агентов, управляющих всей системой

 

Обычно в многоагентных системах исследуются программные агенты. Тем не менее, составляющими мультиагентной системы могут также быть роботы, люди или команды людей. Также, многоагентные системы могут содержать и смешанные команды.

 

В многоагентных системах может проявляться самоорганизация и сложное поведение даже если стратегия поведения каждого агента достаточно проста. Это лежит в основе так называемых муравьиных алгоритмов.

 

Агенты могут обмениваться полученными знаниями, используя некоторый специальный язык и подчиняясь установленным правилам «общения» (протоколам) в системе. Примерами таких языков являются Knowledge Query Manipulation Language (KQML) и FIPA’s Agent Communication Language (ACL).

 

Изучение многоагентных систем связано с решением достаточно сложных проблем искусственного интеллекта.

 

Темы для исследования в рамках МАС:

-         знания, желания и намерения (BDI),

-         кооперация и координация,

-         организация,

-         коммуникация,

-         согласование,

-         распределенное решение,

-         распределенное решение задач,

-         мультиагентное обучение

-         надежность и устойчивость к сбоям

Многие МАС имеют компьютерные реализации, основанные на пошаговом имитационном моделировании. Компоненты МАС обычно взаимодействуют через весовую матрицу запросов и матрицу ответов,

 

Модель «Запрос — Ответ — Соглашение» — обычное явление для МАС. Схема реализуется за несколько шагов:

сначала всем задаётся вопрос наподобие: «Кто может мне помочь?»

на что только «способные» отвечают «Я смогу, за такую-то цену»

в конечном итоге, устанавливается «соглашение»

 

Для последнего шага обычно требуется ещё несколько (более мелких) актов обмена информацией. При этом принимаются во внимание другие компоненты, в том числе уже достигнутые «соглашения» и ограничения среды.

 

Другой часто используемой парадигмой в МАС является «феромон», где компоненты «оставляют» информацию для следующих в очереди или ближайших компонентов. Такие «феромоны» могут испаряться со временем, т. е. их значения могут изменяться со временем.

 

МАС также относятся к самоорганизующимся системам, так как в них ищется оптимальное решение задачи без внешнего вмешательства. Под оптимальным решением понимается решение, на которое потрачено наименьшее количество энергии в условиях ограниченных ресурсов.

 

Главное достоинство МАС — это гибкость. Многоагентная система может быть дополнена и модифицирована без переписывания значительной части программы. Также эти системы обладают способностью к самовосстановлению и обладают устойчивостью к сбоям, благодаря достаточному запасу компонентов и самоорганизации.

 

Многоагентные системы применяются в нашей жизни в графических приложениях, например, в компьютерных играх. Агентные системы также были использованы в фильмах . Теория МАС используется в составных системах обороны. Также МАС применяются в транспорте, логистике, графике, геоинформационных системах и многих других. Многоагентные системы хорошо зарекомендовали себя в сфере сетевых и мобильных технологий, для обеспечения автоматического и динамического баланса нагруженности, расширяемости и способности к самовосстановлению

 

Hosted by uCoz